
Exploiting Structure

P. Sam Johnson

National Institute of Technology Karnataka (NITK)
Surathkal, Mangalore, India

P. Sam Johnson Exploiting Structure 1/25



Introduction

The efficiency of a given matrix algorithm depends on many things. Most
obvious and what we treat in this section is the amount of required
arithmetic and storage. We continue to use matrix-vector and
matrix-matrix multiplication as a vehicle for introducing the key ideas. As
examples of exploitable structure we have chosen the properties of
bandedness and symmetry. Band matrices have many zero entries and so
it is no surprise that band matrix manipulation allows for many arithmetic
and storage shortcuts. Arithmetic complexity and data structures are
discussed in this context.

Symmetric matrices provide another set of examples that can be used to
illustrate structure exploitation. Symmetric linear systems and eigenvalue
problems have a very prominent role to play in matrix computations and
so it is important to be familiar with their manipulation.

P. Sam Johnson Exploiting Structure 2/25



Band Matrices and the x − 0 Notation

We say that A ∈ Rm×n has lower bandwidth p if aij = 0 whenever i > j +p
and upper bandwidth q if j > i + q implies aij = 0. Here is an example of
an 8-by-5 matrix that has lower bandwidth 1 and upper bandwidth 2:

x x x 0 0
x x x x 0
0 x x x x
0 0 x x x
0 0 0 x x
0 0 0 0 x
0 0 0 0 0
0 0 0 0 0


.

The x ’s designates arbitrary nonzero entries. This notation is handy to
indicate the zero-nonzero structure of a matrix and we use it extensively.

P. Sam Johnson Exploiting Structure 3/25



Diagonal Matrix Manipulation

Band structures that occur frequently are tabulated in the following.

Matrices with upper and lower bandwidth zero are diagonal. If D ∈ Rm×n

is diagonal, then

D = diag(d1, . . . , dq), q = min{m, n} ⇐⇒ di = dii

If D is diagonal and A is a matrix, then DA is a row scaling of A and AD
is a column scaling of A.

Type of Matrix Lower Bandwidth Upper Bandwidth
diagonal 0 0
upper triangular 0 n − 1
lower triangular m − 1 0
tridiagonal 1 1
upper bidiagonal 0 1
lower bidiagonal 1 0
upper Hessenberg 1 n − 1
lower Hessenberg m − 1 1

Table: Band Terminology for m-by-n Matrices

P. Sam Johnson Exploiting Structure 4/25



Triangular Matrix Multiplication

To introduce band matrix “thinking” we look at the matrix multiplication
problem C = AB when A and B are both n-by-n and upper triangular.

The 3-by-3 case is illuminating:

C =

a11b11 a11b12 + a12b22 a11b13 + a12b23 + a13b33
0 a22b22 a22b23 + a23b33
0 0 a33b33

 .

It suggests that the product is upper triangular and that its upper
triangular entries are the result of abbreviated inner products.

P. Sam Johnson Exploiting Structure 5/25



Triangular Matrix Multiplication (Contd...)

Indeed, since aikbkj = 0 whenever k < i or j < k we see that

cij =
∑j

k=i aikbkj and so we obtain:

Algorithm 1.2.1 (Triangular Matrix Multiplication) If A,B ∈ Rn×n are
upper triangular, then this algorithm computes C = AB.

C = 0
for i=I:n

for j=i:n
for k=i:j

C (i , j) = A(i , k)B(k, j) + C (i , j)

end
end

end

P. Sam Johnson Exploiting Structure 6/25



Flops

To quantify the savings in this algorithm we need some tools for measuring
the amount of work.

Obviously, upper triangular matrix multiplication involves less arithmetic
than when the matrices are full. One way to quantify this is with the
notion of a flop. A flop1 is a floating point operation. A dot product or
saxpy operation of length n involves 2n flops because there are n
multiplications and n adds in either of these vector operations.

The gaxpy y = Ax + y where A ∈ Rm×n involves 2mn flops as does an
m-by-n outer product update of the form A = A + xyT .

1In the first edition of this book we defined a flop to be the amount of work
associated with an operation of the form aij = aij + aikakj , i.e., a floating point add, a
floating point multiply, and some subscripting. Thus, an “old flop” involves two “new
flops.” In defining a flop to be a single floating point operation we are opting for a more
precise measure of arithmetic complexity.
P. Sam Johnson Exploiting Structure 7/25



Flops (Contd...)

The matrix multiply update C = AB + C where A ∈ Rm×p, B ∈ Rp×n,
and C ∈ Rm×n involves 2mnp flops.

Flop counts are usually obtained by summing the amount of arithmetic
associated with the most deeply nested statements in an algorithm.

For matrix-matrix multiplication, this is the statement,

C (i , j) = A(i , k)B(k, j) + C (i , j)

which involves two flops and is executed mnp times as a simple loop
accounting indicates. Hence the conclusion that general matrix
multiplication requires 2mnp flops.

P. Sam Johnson Exploiting Structure 8/25



Flops (Contd...)

Now let us investigate the amount of work involved in Algorithm 1.2.1.
Note that cij , (i ≤ j) requires 2(j − i + 1) flops. Using the heuristics

q∑
p=1

p =
q(q + 1)

2
≈ q2

2

and
q∑

p=1

p2 =
q3

3
+

q2

2
+

q

6
≈ q3

3

we find that triangular matrix multiplication requires one-sixth the number
of flops as full matrix multiplication:

n∑
i=1

n∑
j=i

2(j − i + 1) =
n∑

i=1

n−i+1∑
j=1

2j ≈
n∑

i=1

2(n − i + 1)2

2
=

n∑
i=1

i2 ≈ n3

3
.

P. Sam Johnson Exploiting Structure 9/25



Flops (Contd...)

We throw away the low order terms since their inclusion does not
contribute to what the flop count “says.”

For example, an exact flop count of Algorithm 1.2.1 reveals that precisely
n3/3 + n2 + 2n/3 flops are involved. For large n (the typical situation of
interest) we see that the exact flop count offers no insight beyond the
n3/3 approximation.

Flop counting is a necessarily crude approach to the measuring of program
efficiency since it ignores subscripting, memory traffic, and the countless
other overheads associated with program execution.

We must not infer too much from a comparison of flops counts. We
cannot conclude, for example, that triangular matrix multiplication is six
times faster than square matrix multiplication. Flop counting is just a
“quick and dirty” accounting method that captures only one of the several
dimensions of the efficiency issue.

P. Sam Johnson Exploiting Structure 10/25



The Colon Notation-Again

The dot product that the k-loop performs in Algorithm 1.2.1 can be
succinctly stated if we extend the colon notation introduced in § 1.1.8.

Suppose A ∈ Rm×n and the integers p, q, and r satisfy 1 ≤ p ≤ q ≤ n and
1 ≤ r ≤ m. We then define

A(r , p : q) = [arp, . . . , arq] ∈ R1×(q−p+1).

Likewise, if 1 ≤ p ≤ q ≤ m and 1 ≤ c ≤ n, then

A(p : q, c) =

apc...
aqc

 ∈ Rq−p+1.

P. Sam Johnson Exploiting Structure 11/25



The Colon Notation-Again (Contd...)

With this notation we can rewrite Algorithm 1.2.1 as

C (1 : n, 1 : n) = 0
for i=1:n

for j=i:n
C (i , j) = A(i , i : j)B(i : j , j) + C (i , j)

end
end

We mention one additional feature of the colon notation. Negative
increments are allowed. Thus, if x and y are n-vectors, then
s = xT y(n : −1 : 1) is the summation

s =
n∑

i=1

xiyn−i+1.

P. Sam Johnson Exploiting Structure 12/25



Band Storage

Suppose A ∈ Rn×n has lower bandwidth p and upper bandwidth q and
assume that p and q are much smaller than n.

Such a matrix can be stored in a (p + q + 1)-by-n array A.band with the
convention that

aij = A.band(i − j + q + 1, j) (1)

for all (i , j) that fall inside the band.

P. Sam Johnson Exploiting Structure 13/25



Band Storage (Contd...)

Thus, if

A =



a11 a11 a11 0 0 0
a21 a22 a23 a24 0 0
0 a32 a33 a34 a35 0
0 0 a43 a44 a45 a46
0 0 0 a54 a55 a56
0 0 0 0 a65 a66

 ,

then

A.band =


0 0 a13 a24 a35 a46
0 a12 a23 a34 a45 a56
a11 a22 a33 a44 a55 a66
a21 a32 a43 a54 a65 0

 .

Here, the “0” entries are unused. With this data structure, our
column-oriented gaxpy algorithm transforms to the following:

P. Sam Johnson Exploiting Structure 14/25



Band Storage (Contd...)

Algorithm 1.2.2 (Band Gaxpy) Suppose A ∈ Rn×n has lower bandwidth
p and upper bandwidth q and is stored in the A.band format (1.2.1). If
x , y ∈ Rn, then this algorithm overwrites y with Ax + y .

for j=1:n
ytop = max(1, j − q)
ybot = min(n, j + p)
atop = max(1, q + 2− j)
abot = atop + ybot − ytop
y(ytop : ybot) = x(j)A.band(atop : abot , j) + y(ytop : ybot)

end

P. Sam Johnson Exploiting Structure 15/25



Band Storage (Contd...)

Notice that by storing A by column in A.band , we obtain a saxpy, column
access procedure.

Indeed, Algorithm 1.2.2 is obtained from Algorithm 1.1.4 by recognizing
that each saxpy involves a vector with a small number of nonzeros.

Integer arithmetic is used to identify the location of these nonzeros.

As a result of this careful zero/nonzero analysis, the algorithm involves
just 2n(p + q + 1) flops with the assumption that p and q are much
smaller than n.

P. Sam Johnson Exploiting Structure 16/25



Symmetry

We say that A ∈ Rn×n is symmetric if AT = A. Thus,

A =

1 2 3
2 4 5
3 5 6


is symmetric. Storage requirements can be halved if we just store the
lower triangle of elements, e.g., A.vec =

[
1 2 3 4 5 6

]
. In general,

with this data structure we agree to store the aij as follows:

aij = A.vec((j − 1)n − j(j − 1)/2 + i) (i ≥ j) (2)

Let us look at the column-oriented gaxpy operation with the matrix A
represented in A.vec .

P. Sam Johnson Exploiting Structure 17/25



Symmetry (Contd...)

Algorithm 1.2.3 (Symmetric Storage Gaxpy) Suppose A ∈ Rn×n is
symmetric and stored in the A.vec style (2). If x , y ∈ Rn, then this
algorithm overwrites y with Ax + y .

for j=1:n
for i=1:j-1

y(i) = A.vec((i − 1)n − i(i − 1)/2 + j)x(j) + y(i)

end
for i=j:n

y(i) = A.vec((j − 1)n − j(j − 1)/2 + i)x(j) + y(i)

end
end

This algorithm requires the same 2n2 flops that an ordinary gaxpy requires.
Notice that the halving of the storage requirement is purchased with some
awkward subscripting.

P. Sam Johnson Exploiting Structure 18/25



Store by Diagonal

Symmetric matrices can also be stored by diagonal. If

A =

1 2 3
2 4 5
3 5 6

 ,

then in a store-by-diagonal scheme we represent A with the vector

A.diag =
[
1 4 6 2 5 3

]
.

In general, if i ≥ j , then

ai+k,i = A.diag(i + nk − k(k − 1)/2) (k ≥ 0) (3)

Some notation simplifies the discussion of how to use this data structure in
a matrix-vector multiplication.

P. Sam Johnson Exploiting Structure 19/25



Store by Diagonal (Contd...)

If A ∈ Rm×n, then let D(A, k) ∈ Rm×n designate the kth diagonal of A as
follows:

[D(A, k)]ij =

{
aij j = i + k , 1 ≤ i ≤ m, 1 ≤ j ≤ n

0 otherwise.

Thus,

A =

1 2 3
2 4 5
3 5 6

 =

0 0 3
0 0 0
0 0 0


︸ ︷︷ ︸

D(A,2)

+

0 2 0
0 0 5
0 0 0


︸ ︷︷ ︸

D(A,1)

+

1 0 0
0 4 0
0 0 6


︸ ︷︷ ︸

D(A,0)

+

0 0 0
2 0 0
0 5 0


︸ ︷︷ ︸

D(A,−1)

+

0 0 0
0 0 0
3 0 0


︸ ︷︷ ︸

D(A,−2)

.

P. Sam Johnson Exploiting Structure 20/25



Store by Diagonal (Contd...)

Returning to our store-by-diagonal data structure, we see that the nonzero
parts of D(A, 0),D(A, 1), . . . ,D(A, n − 1) are sequentially stored in the
A.diag scheme (3).

The gaxpy y = Ax + y can then be organized as follows:

y = D(A, 0)x +
n−1∑
k=1

(D(A, k) + D(A, k)T )x + y .

Working out the details we obtain the following algorithm.

P. Sam Johnson Exploiting Structure 21/25



Store by Diagonal (Contd...)

Algorithm 1.2.4 (Store-By-Diagonal Gaxpy) Suppose A ∈ Rn×n is symmetric and stored in the
A.diag style (3).

If x , y ∈ Rn, then this algorithm overwrites y with Ax + y .

for i=1:n
y(i) = A.diag(i)x(i) + y(i)

end
for k=1:n-1

t = nk − k(k − 1)/2
{y = D(A, k)x + y}
for i=1:n-k

y(i) = A.diag(i + t)x(i + k) + y(i)

end
{y = D(A, k)T x + y}
for i=1:n-k

y(i + k) = A.diag(i + t)x(i) + y(i + k)

end
end

Note that the inner loops oversee vector multiplications:

y(1 : n − k) = A.diag(t + 1 : t + n − k). ∗ x(k + 1 : n) + y(1 : n − k)

y(k + 1 : n) = A.diag(t + 1 : t + n − k). ∗ x(1 : n − k) + y(k + 1 : n)

P. Sam Johnson Exploiting Structure 22/25



A Note on Overwriting and Workspaces

An undercurrent in the above discussion has been the economical use of storage. Overwriting
input data is another way to control the amount of memory that a matrix computation requires.
Consider the n-by-n matrix multiplication problem C = AB with the proviso that the “input
matrix” B is to be overwritten by the “output matrix” C . We cannot simply transform

C(1 : n, 1 : n) = 0
for j=1:n

for k=1:n
C(:, j) = C(:, j) + A(:, k)B(k, j)

end
end

to

for j=1:n
for k=1:n

B(:, j) = B(:, j) + A(:, k)B(k, j)

end
end

because B(:, j) is needed throughout the entire k-loop.

P. Sam Johnson Exploiting Structure 23/25



A Note on Overwriting and Workspaces

A linear workspace is needed to hold the jth column of the product until it is “safe” to overwrite
B(:, j):

for j=1:n
ω(1 : n) = 0
for k=1:n

ω(:) = ω(:) + A(:, k)B(k, j)

end
B(:, j) = ω(:)

end

A linear workspace overhead is usually not important in a matrix computation that has a

2-dimensional array of the same order.

P. Sam Johnson Exploiting Structure 24/25



Reference Books

1. Gene H. Golub and Charles F. Van Loan, Matrix Computations, 3rd
Edition, Hindustan book agency, 2007.

2. A.R. Gourlay and G.A. Watson, Computational methods for matrix
eigen problems, John Wiley & Sons, New York, 1973.

3. W.W. Hager, Applied numerical algebra, Prentice-Hall, Englewood
Cliffs, N.J, 1988.

4. D.S. Watkins, Fundamentals of matrix computations, John Wiley and
sons, N.Y, 1991.

5. C.F. Van Loan, Introduction to scientific computing: A Matrix vector
approach using Matlab, Prentice-Hall, Upper Saddle River, N.J, 1997.

P. Sam Johnson Exploiting Structure 25/25


